Evolved Policy Gradients
نویسندگان
چکیده
We propose a meta-learning approach for learning gradient-based reinforcement learning (RL) algorithms. The idea is to evolve a differentiable loss function, such that an agent, which optimizes its policy to minimize this loss, will achieve high rewards. The loss is parametrized via temporal convolutions over the agent’s experience. Because this loss is highly flexible in its ability to take into account the agent’s history, it enables fast task learning and eliminates the need for reward shaping at test time. Empirical results show that our evolved policy gradient algorithm achieves faster learning on several randomized environments compared to an off-the-shelf policy gradient method. Moreover, at test time, our learner optimizes only its learned loss function, and requires no explicit reward signal. In effect, the agent internalizes the reward structure, suggesting a direction toward agents that learn to solve new tasks simply from intrinsic motivation.
منابع مشابه
India's Technology Policy
In this paper technology policy of India which has evolved over the years have been introduced as following: Firstly, it is selective and seeks to protect local technology. Secondly, it seeks to reduce to direct costs and individual costs of technology imports by regulating the royalty rates, other payments, the duration and restrictive clauses. Thirdly, it discourages technology imports throug...
متن کاملRevisiting stochastic off-policy action-value gradients
Off-policy stochastic actor-critic methods rely on approximating the stochastic policy gradient in order to derive an optimal policy. One may also derive the optimal policy by approximating the action-value gradient. The use of action-value gradients is desirable as policy improvement occurs along the direction of steepest ascent. This has been studied extensively within the context of natural ...
متن کاملPolicy gradients in linearly-solvable MDPs
We present policy gradient results within the framework of linearly-solvable MDPs. For the first time, compatible function approximators and natural policy gradients are obtained by estimating the cost-to-go function, rather than the (much larger) state-action advantage function as is necessary in traditional MDPs. We also develop the first compatible function approximators and natural policy g...
متن کاملAdaptive Step-size Policy Gradients with Average Reward Metric
In this paper, we propose a novel adaptive step-size approach for policy gradient reinforcement learning. A new metric is defined for policy gradients that measures the effect of changes on average reward with respect to the policy parameters. Since the metric directly measures the effects on the average reward, the resulting policy gradient learning employs an adaptive step-size strategy that ...
متن کاملExpected Policy Gradients for Reinforcement Learning
We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04821 شماره
صفحات -
تاریخ انتشار 2018